Small Signal MOSFET

-20 V, -760 mA, Single P-Channel, Gate Zener, SC-75, SC-89

Features

- Low R_{DS(on)} for Higher Efficiency and Longer Battery Life
- Small Outline Package (1.6 x 1.6 mm)
- SC-75 Standard Gullwing Package
- ESD Protected Gate
- Pb–Free Packages are Available

Applications

- High Side Load Switch
- DC–DC Conversion
- Small Drive Circuits
- Battery Operated Systems such as Cell Phones, PDAs, Digital Cameras, etc.

MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

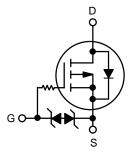
Parameter	Symbol	Value	Units	
Drain-to-Source Voltage	V _{DSS}	-20	V	
Gate-to-Source Voltage		V _{GS}	±6.0	V
Continuous Drain Current (Note 1)			-760	mA
Power Dissipation (Note 1) SC-75 SC-89 SC-89		P _D	301 313	mW
Pulsed Drain Current tp =10 µs		I _{DM}	±1000	mA
Operating Junction and Storag	T _J , T _{STG}	–55 to 150	°C	
Continuous Source Current (Bo	۱ _S	-250	mA	
Lead Temperature for Soldering (1/8 in from case for 10 s)	ΤL	260	°C	
Gate-to-Source ESD Rating - (Human Body Model	ESD	1800	V	

THERMAL RESISTANCE RATINGS

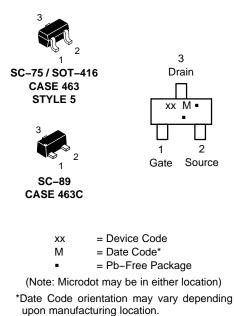
Junction-to-Ambient - Steady State (Note 1)	R_{\thetaJA}		°C/W
SC-75	-	415	
SC-89		400	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Surface mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces).



ON Semiconductor®


http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} TYP	I _D MAX
–20 V	0.26 Ω @ -4.5 V	
	0.35 Ω @ −2.5 V	–760 mA
	0.49 Ω @ -1.8 V	

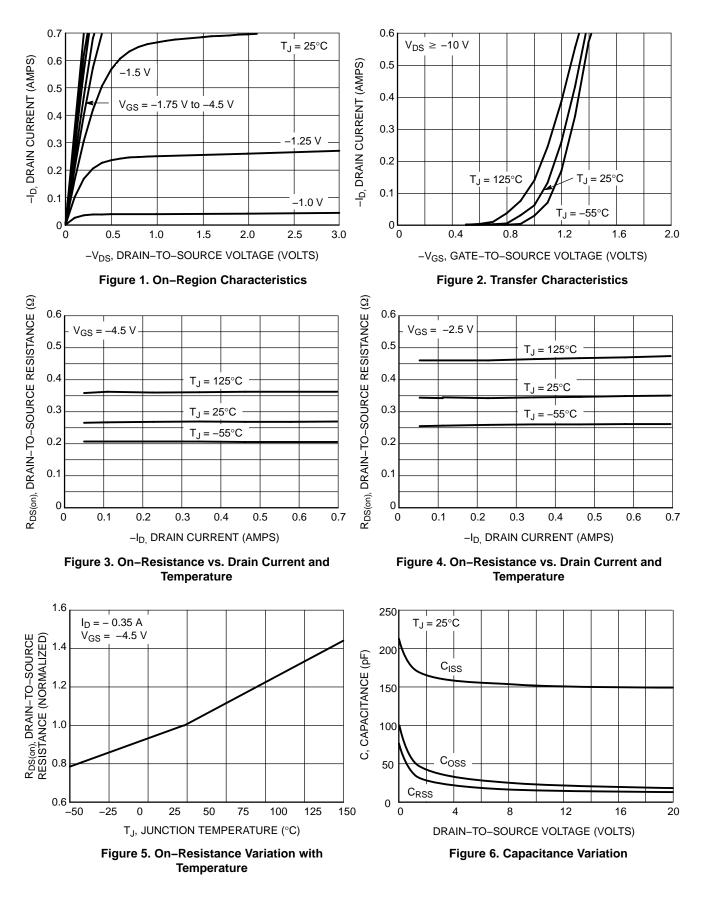
MARKING DIAGRAM & PIN ASSIGNMENT

ORDERING INFORMATION

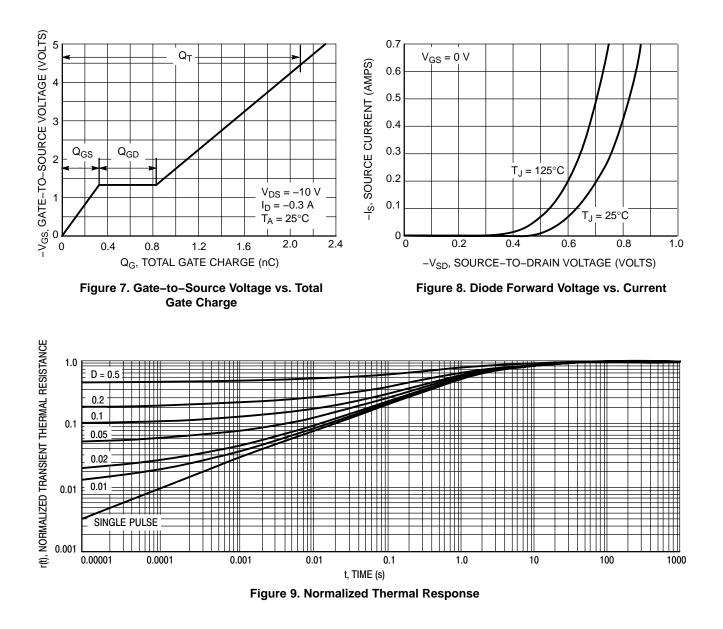
See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise stated)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 V, I_D = -250 \mu A$ -2				V
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V, V_{DS} = -16 V$	V _{GS} = 0 V, V _{DS} = -16 V		-100	nA
Gate-to-Source Leakage Current	I _{GSS}	V_{DS} = 0 V, V_{GS} = ±4.5 V		±1.0	±10	μΑ
ON CHARACTERISTICS (Note 2)		• •				
Gate Threshold Voltage	V _{GS(TH)}	$V_{DS} = V_{GS}, I_D = -250 \ \mu A$	-0.45			V
Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = -4.5 \text{ V}, I_D = -350 \text{ mA}$		0.26	0.36	Ω
		V_{GS} = -2.5 V, I _D = -300 mA		0.35	0.45	
		$V_{GS} = -1.8 \text{ V}, I_D = -150 \text{ mA}$		0.49	1.0	
Forward Transconductance	9FS	$V_{DS} = -10 \text{ V}, \text{ I}_{D} = -250 \text{ mA}$		0.4		S
CHARGES AND CAPACITANCES		•	-			
Input Capacitance	C _{ISS}	$V_{GS} = 0 V, f = 1.0 MHz,$		156		pF
Output Capacitance	C _{OSS}	$V_{\rm DS} = -5.0 \rm V$		28		
Reverse Transfer Capacitance	C _{RSS}			18		
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = -4.5 \text{ V}, V_{DD} = -10 \text{ V},$ $I_{D} = -0.3 \text{ A}$		2.1		nC
Threshold Gate Charge	Q _{G(TH)}	$I_{\rm D} = -0.3 \rm{A}$		0.125		
Gate-to-Source Charge	Q _{GS}			0.325		
Gate-to-Drain Charge	Q _{GD}			0.5		
SWITCHING CHARACTERISTICS (Note	e 3)					
Turn-On Delay Time	td _(ON)	$V_{GS} = -4.5 \text{ V}, V_{DD} = -10 \text{ V},$		8.0		ns
Rise Time	tr	$I_D = -200 \text{ mA}, R_G = 10 \Omega$		8.2		-
Turn-Off Delay Time	td _(OFF)	1		29		
Fall Time	t _f	1		20.4		
DRAIN-SOURCE DIODE CHARACTER	ISTICS		•	-	-	•
Forward Diode Voltage	V _{SD}	$V_{GS} = 0 V, I_{S} = -250 mA$		-0.72	-1.1	V
				•		•

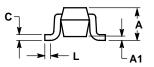

Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
Switching characteristics are independent of operating junction temperatures.

ORDERING INFORMATION


Device	Marking	Package	Shipping [†]
NTA4151PT1	TN	SC-75	3000/Tape & Reel
NTA4151PT1G	TN	SC–75 (Pb–Free)	3000/Tape & Reel
NTE4151PT1G	ТМ	SC-89 (Pb-Free)	3000/Tape & Reel

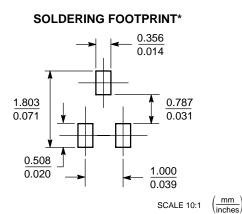
+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

TYPICAL ELECTRICAL CHARACTERISTICS

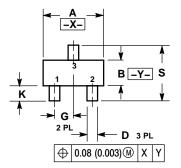

TYPICAL ELECTRICAL CHARACTERISTICS

PACKAGE DIMENSIONS

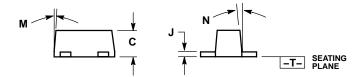
SC-75/SOT-416 CASE 463-01 ISSUE F

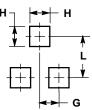


NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER.


	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.70	0.80	0.90	0.027	0.031	0.035
A1	0.00	0.05	0.10	0.000	0.002	0.004
b	0.15	0.20	0.30	0.006	0.008	0.012
С	0.10	0.15	0.25	0.004	0.006	0.010
D	1.55	1.60	1.65	0.059	0.063	0.067
Е	0.70	0.80	0.90	0.027	0.031	0.035
е	1.00 BSC			C	.04 BSC)
L	0.10	0.15	0.20	0.004	0.006	0.008
HE	1.50	1.60	1.70	0.061	0.063	0.065

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


SC-89, 3 LEAD CASE 463C-03 ISSUE C


NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: MILLIMETERS 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE
- MATERIAL. 4. 463C-01 OBSOLETE, NEW STANDARD 463C-02.

	MIL	LIMETE	RS	INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	1.50	1.60	1.70	0.059	0.063	0.067
В	0.75	0.85	0.95	0.030	0.034	0.040
С	0.60	0.70	0.80	0.024	0.028	0.031
D	0.23	0.28	0.33	0.009	0.011	0.013
G	0.50 BSC			0.020 BSC		
н	0.53 REF			0	.021 RE	F
J	0.10	0.15	0.20	0.004	0.006	0.008
κ	0.30	0.40	0.50	0.012	0.016	0.020
L	1.10 REF			0.043 REF		
М			10			10
Ν			10 -			10
S	1.50	1.60	1.70	0.059	0.063	0.067

SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and IIII are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use persons, and reasonable attorney fees andising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use persons and sensing out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized to applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5773–3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative